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Abstract: Academic and applied researchers in economics have, in the last ten years, become
increasingly inferested in the topic of chaotic dynamics. In this paper we undertake nonlinear
dynamical analysis of one representative time series taken from financial markets, namely the Standard
and Poor’s (S&P), Composite Price [ndex. The data is based upon (adjusted), daily data from 1928-
1987, comprising 16127 observations. The resulls in the paper, based on the (rassberger-Procaccia
(GP) correlation dimension measurement in conjunction with nonlinear noise filtering and the swtogate
technique, show strong evidence of chaos in one of these series, the S&P 500. The analysis shows that
the accuracy of results improves with the lncrease in the number of recording points and the length of
the time series, 5000 data points being sufficient to identify deterministic dynamics.

1.0 Introduction

Chaos is widely found in the flelds of physics
and other natural sciences, however, the
existence of chaos in economic data is still an
open question. Various coniributions have
been made to this economic literature
including, Bamett et al. (1994), Bamett and
Chen (1988), Chen (1996), Brock and Sayers
{1989), and Ramsey, Sayvers and Rothman
(1990). In addition, a new international journal
which is exclusively devoted to, and entitled,
Studies  in Nonlinear  Dynamics  and
Econometrics, has recently been founded
which is testimony to the interest in this area.
Some of the main problems which pervade
the area of economic time series evidence on
chaos are the effects of noise, trend, and more
general structural change. Of these noise and
time evolution appear to be the most
problematic with the latter often modelled via
ARCH/GARCH  processes which  allow
changing means and variances. These problems
are compounded by the often paucity of the
available data. In attempting to answer
guestions relating to the existence of
nonlinearities and chaos in economic data,
researchers have normally used either the
Hinich bispectrum test, the BDS test of Brock,
Dechert and  Scheinkman (1996), White’s
{1989), test or more recently Kaplan’s test, to
identify nonlinearities and when considering
chaos have used tools based on phase space
reconstruction developed and used successfully
in the physical sciences. The most commonly
used of these chaos tests are the Lyapunov
exponents test and the Grassberger-Procaccia

(GP) correlation dimension test. While these
tests have revealed an abundance of previously
unexplained nonlinear structure and yielded a
deeper understanding of the dynamics of many
different economic time series, the case of
deterministic chaos in these types of series is
yet to be clarified. The main problem we
identify in this study is that of noise which
degrades these measurement techniques. The
use of conventional filiering methods such as
iow pass filtering using Fourier transforms,
moving averages etc., and also singular
spectrum analysis based on singular value
decomposition commonly used in economics,
can lead to distortion of the dynamics.

2.6 Testing approach

Before economic data can be analysed for the
existence of deterministic chaos, the twin
problems of growing time trends and noise
require consideration. The main contribution
of this paper will be to the latter where new
nonlinear noise reduction (NNR), techniques
will be appiied to the date. However, the
following general methodology will be
foilowed.

Firstly, the (log} data will be adjusted to
remove systematic calendar effects and trend
effects will be removed by differencing
following Nelson and Plosser (1982).
Currently, application of the Hodrick-Prescott
{1981), to the data is being undertaken to
assess the sensitivity of such filters.

Secondly, in order to reconstruct a chaotic
attractor in phase space, two basic paramters,
the embedding dimension m, and delay time A,
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must be correctly determined. The embedding
theorem (m=2d+{, where d 1is correlation
dimension), of Mane and Takens provides a
sufficient condition in reconstructing an
attractor from a scalar time series. An efficient
method to determine an acceptable minimum
m, from experimental time series i3 the so-
called fulse nearest neighbor (FNN), recently
developed using a geometrical construction. It
monitors the behaviour of near neighbours
under changes in the embedding dimension
from m-»m+1 When the number of the false
nearest neighbours arising through projection
is zero in dimension m, the attractor has
unfolded in this embedding dimension m. This
technique is robust to the noise and a correct
region of the embedding dimension can be
determined in the presence of noise, which is
impoertant for the type of data used here. An
estimate of the value of the delay time A Is
provided by the autocorrelation function
{ACF).

The Lyapuncv exponents test and the
Grassberger-Procassia correlation  dimension
method are well documented methods used in
the quantitative analysis of time series data as
tests for chaos, see for example, Abarbane! et
al. {1993). Here we concentrate on the laiter.

The geometrical features of an attractor can
be specified using the Grassberger-Procaccia
correlation dimension.  Suppose we have a
scalar time serles x;{i=12, .. Njof =&

dynamical variable sampied at an equal time
interval As from which the K vectors ¥, {/=/,
2,...K) in the m-dimensional phase space can be
reconsiructed using the time delay technique.
Then the correlation dimension [}, is defined
and calculated as:

logq C,,(&)

Dy = lim n

e»0 logy e
where (C,{¢)is known as the comrelation

integral and can be computed as

: 1 &
Cple) = é{fwmgﬁ(é —11‘?’1 - Y‘f‘ﬂ}v
2

where O(x) is the Heaviside siep function and
tfyi - y}” is the distance between the vectors

¥ and Yj.

K
Thus, the sum 20{5——”’?} ~ Y, is equal to
p

i
the number of pairs (7j) whose distance
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in the reconstructed phase space is

-,

less than the distance . For a ¢haotic attractor,

Dy is a non-integer, the value of which
determines whether the system is low- or high-
dimensional.

The use of this appreach must, however, be
applied with caution since it describes a kind of
scaling of behaviour in the limit as the distance
between points on the atiractor approaches
zero and therefore is sensifive to the presence
of noise. Indeed our numerical experiments
have shown that a noise level as small as 2~5%
of the time series content can make these
measurements inaccurate and inconclusive.
Moreover, noise i3 also a main source to
prevent precise predicition. Here we use NNR
algorithms based on finding and extracting the
approximate trajectory which is close to the
original clean dynamics in reconstructed phase
space from the observed time series. The
implementation of the algorithms involves
three basic steps: 1) to reconstruct the
underlying attractor from the observed series,
ii) o estimate the local dynamical behaviour
choosing a class of modeis and fitting the
parameters statistically, and i) to adjust the
observations 1o make them consistent with the
clean dynamics. The technique can reduce
noise by about one order of magnitude. If
some standard techniques are employed to pre-
process the data, such as band-pass filtering,
filtered embedding and singular  value
decompaosition, significantly larger amounts of
noise can be reduced since the local dynamics
are targely enhanced.

These nonlinear noise reduction algorithms
have been develped under the assumption that
the noise is additive rather than dynamic. In
practice, the two may not be distinguishable,
being based on data only and both of them can
be reduced as long as the exact dynamics can
be reconstructed. However, in the following
cases, the algorithms witl fail: i) where the data
are purely stochastic, ii) the deterministic
dynamics are so weak that the data are
uncorrelated, i} the dynamic noise has driven
the trajectories far from the exact dynamics of
the nonlinear system, which becomes
ashadowing problem.  These methods are
applied to the data prior to the application of
the quantiative measurements for chaos.

While the corretation dimension
measurement is often accepted as ‘proof” of
chaos, it is not a definitive test against time
series data with certain types of coloured noise.
This issue will be resolved using swrrogaie
techriques. The correlation dimension method
must be applied together with a surrogate



technique to reliably discriminate between
chaos and noise from a time series so as to
avoid claims of chaos when simpler (such as
linearly correlated noise), can explain the data.
The consideration of surrogate data is based on
the following. 1} Statement of a null hypothesis
that shall be tested for consistency with the
recorded original data, 2} Generation of a
number of swrrogate data sets, an algorithm is
to randomise the phase of the raw data so that
the surrogated set has the same Fourier specira
as the original, 3) Calculation of the value of
interest, e.g., correlation dimension, Lyvapunov
exponents etc., for the original and all the
surrpgates, 4) Calculate mean and spread of the
results obtained from the surrogaies to
determine whether the difference to the
original, if any, is statistically significant.

3.0 Some results based uzpor the Standard
and Poor’s Composite Price Index

Although several economic data sets have been
considered, we will report only one based upon
the Standard and Poor’s Composite Price Index
whick comprises 16127 daily observations on
the logarithmic price change
X, = iOO{Iog{p,}— log(pi,ml)]. For details of

the data set see Gallant et al. {1993). The time
series x, has been adjusted to remove

systematic calendar and trend effects and is
taken to be jointly stationary. A representative
window of the raw series taken after 1947 is
shown as Figure 1(a). Our analysis, based upon
the GP correlation dimension measurement, in
conjunction with the nonlinear noise reduction
filtering and surrogate technigue provides
strong evidence in favour of chaos in this data.
Some results are detailed below. As shown in
Figure 2(c) (open squares), the raw data gave
no  saturated  correfation  dimension  on
increasing embedding dimension, suggesting
that the data may be noise-dominated. Figure
1{b) presents the data afler NNR of the raw
data, Comparison of this with the raw data
shows that the effect of noise is manifested as
relatively large amplitude random fluctuations
masking the overall deterministic patterns, in
which the noise level is estimated to be ~90%
of the clean signall Correlation dimension
analysis of this noise-filtered data revealed a
clear (scaling) saturation region on increasing
the embedding dimension as shown in Figure 2
(solid circles in {c)), indicative of deterministic
chaos.

In confirming that the convergent correlation
dimension is & result of chaotic dynamics, both
the raw and noise-filtered series were

surrogated to randomise the phase and so
destroy the deterministic sfructure. The results
show the dimension to diverge as shown in
Figure 2(c} {open circles), consistent with
stochastic behaviour, from which we confirm
that the saturated correlation dimension of the
noeise-filtered data in Figure 2(c) arises from an
endogenous deterministic mechanism.  The
accuracy of these results improves with the
increase in the number of recording points and
the length of the time series; 5600 data points
being sufficient to identify deterministic
dynamics. A particularly interesting finding is
the overriding prevalence of stochastic
behaviour in the first 5000 data points
corresponding  to  the period 1928-1946,
beyond which the data, analysed in either sets
of 5000 data points or as a whole, displayed
the deterministic chaotic dynamics with a
correlation  dimension Dy ~45. These

characterisations may be a consequence of the
economnic and social shocks caused by the
Great Depression and  subsequent  Second
World War.

4.6 Conclusions

Using the Standard and Poor’s Composite
Price Index comprising 16,127  daily
observations from 1928-1987, we have
identified the existence of deterministic chaos,
Furthermore, the pre-WW?2 period appears to
be more volatile than the post-War period.
Nonlinear noise reduction methods appear
crucial in the removal of nolse and this may
transpire to be a general issue in the
identification of chaotic dynarnics in economic
data.

In future work, we will be considering the
implications of different transformations (for
example Hodrick-Prescott) and  different
versions of nonlinear noise reduction filters.
Furthermore, we will be considering
forecasting and control, again emphasising
nonlinear aspects,
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Figure 1. Two time series of (¢} (a) raw data and (b} data after NNR.
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Figure 2. (a) Logarithmic plot of correlation function Crp(R) versus correla-
tion distance R for embedding dimension m = 3,4,...,13, (b) Local slope as a
function of Logz(R) derived from (a), and (c) Correlation dimension Dy versus
embedding dimension m: 0 - data before NNR, @ - data after NNR, and © -
surrogate set from the data after NNR.
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